Topological mixing and uniquely ergodic systems

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Topological Mixing and Uniquely Ergodic Systems

Every ergodic transformation (X, 7, :~,/z) has an isomorphic system (Y, U, ~, v) which is uniquely ergodic and topologically mixing.

متن کامل

A Uniquely Ergodic Cellular Automaton

We construct a one-dimensional uniquely ergodic cellular automaton which is not nilpotent. This automaton can perform asymptotically infinitely sparse computation, which nevertheless never disappears completely. The construction builds on the self-simulating automaton of Gács. We also prove related results of dynamical and computational nature, including the undecidability of unique ergodicity,...

متن کامل

Every Ergodic Measure Is Uniquely Maximizing

Let Mφ denote the set of Borel probability measures invariant under a topological action φ on a compact metrizable space X. For a continuous function f : X → R, a measure μ ∈ Mφ is called f -maximizing if ∫ f dμ = sup{ ∫ f dm : m ∈Mφ}. It is shown that if μ is any ergodic measure in Mφ, then there exists a continuous function whose unique maximizing measure is μ. More generally, if E is a non-e...

متن کامل

Topological Weak Mixing and Quasi-bohr Systems

A minimal dynamical system (X,T ) is called quasi-Bohr if it is a nontrivial equicontinuous extension of a proximal system. We show that if (X,T ) is a minimal dynamical system which is not weakly mixing then some minimal proximal extension of (X, T ) admits a nontrivial quasi-Bohr factor. (In terms of Ellis groups the corresponding statement is: AG′ = G implies weak mixing.) The converse does ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Israel Journal of Mathematics

سال: 1987

ISSN: 0021-2172,1565-8511

DOI: 10.1007/bf02772176